RANDOM PULSATIONS IN A COARSELY
DISPERSE FLUIDIZED BED

Yu. A. Buevich and V. V. Butkov UDC 532.546.6

A simple model of a uniform iscotropic bed of large particles fluidized by a gas is offered
which allows one to estimate the intensity of the chaotic translational and rotational mo-
tion of the particles. The influence of the pulsations on the observed macroscopic proper-
ties of the bed is discussed.

As is known, the main feature of fluidized systems, making them very attractive for practical use as the
main working substance for heat exchangers, chemical-engineering apparatus, etc., is that the effective va-
lues of the parameters characterizing the intensity of transfer processes in them are usually several orders of
magnitude higher than the analogous values for homogeneous fluids. This fact is connected in considerable
measure with the occurrence of developed pulsation motions, both of the suspended particles and of the fluidiz-
ing medium, in a uniform fluidized bed or in the compact phase of a nonuniform bed. The theory of such
mpseudoturbulent” motions was developed in [1] for beds of sufficiently fine particles, when the hydraulic forces
of the interphase interaction are linear with respect to the relative velocity of the phases, while the interaction
between particles is accomplished predominantly by random fields of the velocity and pressure of the continu-
ous phase generated by all the particles, so that direct particle collisions can be neglected entirely in a first
approximation.

Entirely different circumstances arise in fluidized beds of large particles; when the Reynolds number,
which characterizes the displacement flow over one particle, is large compared with unity, the forces of in-
teraction between the phases are nonlinear with respect to velocity, and the exchange of momentum and energy
between particles is accomplished mainly through their collisions. In the limiting situation when the particles
are very large and their pulsations are intense enough one can assume that the collisions lead to an approxi-
mately equilibrium distribution of the energy of chaotic motion over the translational and rotational degrees of
freedom of the particles, as is assumed in 2], for example.

Let us consider a bed of spherical particles of radius ¢ and density d; kept in the fluidized state by a
homogeneous, ascending, gas stream of density d, and viscosity y,. For simplicity we assume the bed to be
wide in the sense that the influence of the walls on its structure far from them can be neglected. We also
neglect the regular circulation of the gas and the suspended material whose origin may be connected either
with the retarding effect of the walls or with macroscopic instability of the homogeneous state under consider-
ation. Then the mean values of the bed porosity <& > and the gas flow < Q > will depend only on the height x > 0
above the gas-distribution grid x =0, but not on the transverse coordinates. In an investigation of local pulsa-
tions this dependence is also neglected. The mean gas velocity calculated for the free ("through") cross sec-
tion of the bed is < v > =< € >"1< Q >, while the mean particle velocity is < w > = 0.

In reality, the particles are involved in chaotic pulsating motion due to the interaction between the
stream and porosity fluctuations [3], which also cause the appearance of fluctuations in the gas velocity and
pressure. For the local instantaneous values of the gas and particle velocities and the bed porosity we write

v=( V)V, w=w, g=(e) ¢, o8]
where the symbols with primes denote certain random functions of time and the coordinates which have zero
means, The problem consists in finding the statistical characteristics of these random quantities in the form
of functions of <& > and < Q> and the physical parameters of the particles and the gas.

For this purpose we investigate the equations of translational motion and rotation of one (test) particle,
treated as a characteristic representative of the collection of suspended particles. The first of these equa-
tions has the form
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mdwidt =F - F,, -- F, +—mg, m = 4/3na’,, (2)

where F, Fp,, and F are the force of the interaction with the carrier stream, directed along the stream,
the transverse Magnus force, and the force acting on the test particle as a result of collisions with other
particles. In the coordinate system being used the vector of gravitational acceleration is represented in
components in the form g = (—g, 0,0).

Because of the smallness of the density ratio dy/d; we neglect the effect of the associated mass of the
gas. Then to calculate F it is sufficient to consider the force Fg acting on the particle in a steady bed of
motionless particles, which it is convenient to represent with the help of the two-term equation

F, = [B:K (p) + Pk (@) lu, u=v—w, (3)

where B; and B, are certain coefficients and K (p) and K,(o) are functions of the local bed concentration p =1—¢.
A large number of empirical equations have been suggested for these quantities; here we use Ergun's equation
[4], valid for ¢ £ 0.7, in accordance with which

3,5 1
Bo=S0nap,, B == nady, Ky(p) = - Ket)=—. @
€ €
To obtain a representation for the force acting in a bed of freely pulsating particles we expand Fg in a
Taylor series with respect to the fluctuations introduced in (1). Being confined to terms of first order with
respect to the fluctuations, for the average force < F > and its pulsation F' we obtain
(FY=(F,>+ B (KiCpw) +1,K (p2) (u)) +
+ B (Ko [ (') u’ ) 4 Yp (a2 ) uy — Yy { (ugu')? ) ug) +
+ Ky [Cuy (pu'y+ (o (uw) ) Cudl+1oKz (p2y (u) (ud), ®)

F' = (8K + B,Ky (u ) ) o' + BK (wu') Cu ) +
+ (BKT 4 BoKz (1> ) Cudp, up= (ud/(u).
Here we introduce the fluctuations p' = —¢' in the volume concentration of the disperse phase in the bed, while

(F,>=(B,K1+ﬁzK2(u))(ll>,Kj=K]((p>), )

where < Fg > represents the force acting in a uniform stationary bed whose porosity coincides with the mean
porosity < &> of the fluidized bed, while the asterisk denotes differentiation with respect to <p>. We re-
present the Magnus force Fp, in the form [5]

Fr=Be (X0, b= o nade M)

The factor g-! in the expression for the coefficient is introduced phenomenologically here by analogy with the
representation of the second term in (3), as if the displacement streamline flow led to an increase of e-1 times
in the stresses at the surface of the particle responsible for the appearance of the Magnus force.

The quantity A in (7) represents the angular velocity of rotation of the particle; its mean value is equal
to zero owing to the symmetry of the problem. I is clear that the Magnus force is important only at a high
relative gas velocity u; it was evidently first used in [2, 6] in an analysis of fluidized and generally concen-
trated disperse systems. From (7), by analogy with the derivation of (5) from (3), we have

(F,> =0, F,=B;(e> (M x (u)). 8)

Regarding the force F., connected with direct particle collisions, it is only known that it should be re-
presented in the form of a sum of the forces of collisional interactions with individual particles, which differ
from zero only during the small time intervals of such interactions.

By analogy with (2), we write the equation for the rotation of the particle in the form
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Iardt =M - M, | =3/ 7a%,, {9

where M and M, are the moments acting on the test particle on the part of the carrier stream and the other
particles with which it collides. Unfortunately, almost nothing is known either about My or (for large parti-
cles) about the moment M.

In such a situation no consistent analysis of the stochastic equations (2) and (9) proves to be possible
for large particles. In this respect the coarsely disperse system under consideration differs importantly
from suspensions of fine particles when, first, one can either entirely ignore the Magnus force [and the neces-
sity of studying Eq. (9)] or express M with the help of a linear equation through the curl of the velocity of the
suspension and the angular velocity of the particle, and second, one can neglect direct particle collisions by
assuming that they interact by means of the continuous phase. In the case under consideration, on the contrary,
collisions are very important and such a "collisionless" approximation is invalid. To overcome the serious
difficulties which arise, therefore, one must employ some additional considerations which will make it possible
not to treat Eqs. (2) and (9) in their original form.

For large enough particles the exchange of momentum and energy in collisions is comparable in magnitude
with the momentum and energy of the individual colliding particles. Therefore, the relaxation time of the sus-
pended particles is on the same order as the time required for a small number of successive collisions. Con-
sidering that the latter time is quite short in a concentrated fluidized bed (up to p = 0.1}, henceforth we will be
confined to an analysis of only that limiting equilibrium state in which the principle of the equilibrium distribu-
tion of the pulsation energy of the particles over the degrees of freedom must clearly be satisfied. We then
have the relations .

m(w?) =1 (A,

<wi>=<w§>=<w3>:—§—<w2>,<;.§> (10)

1
= (M) =22 = (A%,

in accordance with which it is sufficient to find the average energy of the translational motion of the particles
to determine their root-mean-square velocities. Since w' =w and A' =\, we drop the primes in the designa-
tions of the pulsations w' and A' in (10) and below.

Because the problem is steady-state, the mean pulsation energy does not depend on time, and from (2)
and (9), after scalar multiplication by w and A, respectively, and averaging, we obtain

(Fw) <= (Fw) -+ (Fw) =0, (MA) + (MA) =0, 11)

with the first terms in (11) describing the mean work of the forces F' and F,' and the moment M on the ran-
dom movements of the particle per unit time while the last terms characterize the energy dissipation during
particle collisions. This dissipation is due to the inelasticity of the collisions, as a result of which part of
the energy goes into heat within the particles, to the abrupt change in particle velocity during the collisions,
and to the additional viscous dissipation of energy in the gas connected with it. With good accuracy one can
neglect these effects, as well as the last terms in (11).

The latter means that the energy of particle pulsations in the fluidized bed under consideration will be
the same as that in some fictitious bed with the same average parameters but in which particle collisions are
absent. It is clear that the pulsations in the particle velocities in such a fictitious bed (denoted by capitolized
symbols to avoid confusion) satisfy the following equations:

mdWidt —F -\-F, [dA;dl = M. 12)

As before, the moment M is unknown. For simplicity below, however, we use an "inertialess" approxi-
mation, according to which we neglect the particle's inertia when studying both its rotation and its translational
motion. Then the terms on the left sides of (12) vanish and the second equation gives simply M =0, which is
possible only when the vector rot V/2, characterizing the local vorticity of the gas near the particle, coincides
with the angular velocity A. Within the framework of the inertialess approximation the time dependence of the
fluctuations is unimportant, and they can be formally treated as steady random fields, We obtain the equations
corresponding to this approximation, which the pulsation frequency « must satisfy, from a comparison of the
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terms on the left and right sides of the first equation of (12) with allowance for the expressions for the coeffi-
cients 8, and 3, in (4):
d H
og 100 b 4« Loy =t 13
< at d, oS a d, Yo dy a3

If inequalities (13) are violated then the results obtained with the particle inertia neglected have only
an order-~of-magnitude character.

Using what was said above and the expressions for F' and Fy,' in (5) and (8), from (12) we obtain the
following equations for the fluctuations in the parameters of the fictitious collisionless bed:
(BiKy + BaKo ( u )YV = BoKp (U (u ) =—BiK7 (ud g’ (14)
—BKX ud Cudp —B<e) A X (u)), A=rotV2

To express W and A only through the fluctuation in the concentration one must find a representation for
the pulsation velocity V' of the gas, for which, in accordance with the general method in [1], one would have
to consider the equations of motion of the gas in the gaps between particles. Such an analysis is very cumber-
some; but with the accuracy adopted here it can be simplified considerably by estimating V' from the condition
of constancy of the local gas flow, i.e., from the equality Q' =e'<v> + <e>V' =0. This gives

Vi=—(e)~le(v) = (ed=lp’Cu), V=U+W. (15)

The approximation leading to (15) is equivalent to the assumption that the influence of stresses in the gas
on the particle pulsation is weak, which was already partly used in the derivation of (5), a consequence of which
is the total neglect of fluctuations in the pressure and in the horizontal components of the gas velocity. This is
indirectly confirmed by the analysis in (1], according to which these fluctuations do not much affect the pulsa-
tions of fine enough particles even when they are fluidized by drops of liquids.

Now let us solve Eqs. (14) and (15). Since <u > = (<u>, 0, 0) in the components, from (15) and the
second equation of (14) we have the following representation for A:

A=",(e> (u) (0, dp'[0z, —0p'[3y). (16)
Then for the vector A x <u> we obtain
A (ud=—",(e)>  (ud2(0, dp'/oy, dp'/d2), 1n
so that the first equation in (14) leads to the equalities
(BsKy+ 28K, (u)) U, =—PB:Ky (ud o —BKF (ud ',
(B:Ks 4+ BoK, (ud ) U, =YoBy (&) 2 ud %y 0,

(18)

where U, ! is the projection of U’ onto the horizontal plane in which the gradient operator v, p' = (0, 80'/9y,
dp'/9z) operates.

From (15) and (18) it is easy to obtain representations for the components of the vector W. In accord-
ance with the data indicated above, the total energy E = ‘/2(m< W?> +<A?>) of the pulsating motion of a par-
ticle is interesting. We have

Az 1 ‘ (19)
Gyt agers (TP
(w2 ( 1 &Kr+5a’<§<u>)2 2y ! ( By (&> M (u) )2 : (20)
= + 2y
(udt (ed  PBKi+2B.K,Cud) ¢ 4 (ed2\ BiKy+ BoKp (u) <|Vipl>

For the final determination of E we must find explicit expressions for <p'’> and < |V, p'1?>. The latter
is easy to do by using the spectral theory of the random concentration of a disperse system developed in [7],
from which
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which also determines the rms components of the translational and angular velocities of the particles in ac-
cordance with (10).

If we use Egs. (4) and (7) we obtain from (22), after a simple calculation,

__2[‘ - ( {0 )2{1 S Qj{( - A '_<f)._>_il9'0_2_3_‘3..Rc_Y)_.-‘_ 0,58 (p)2:3 [04 = [___Oﬁd_fil?c _)“} , 23)
muy? (&), 0 (p> - 0.0466 Re \ (p) -- 0.0233Re J

%/
where we introduced the modified Reynolds number
Re=avy! (&) (ub =mavy! (Q). (24)
As Re — 0 and Re — = we obtain the asymptotic equations

= () ) o1 <2
miuy? (e e '

<O - p*
% (<o

(&)

\)2(2.25 5-3.98 ¢ p) zfs)( | \_n>_) '

m<u>3_ Ox

The dependence of the particle pulsation energy on <p> at different Re and px = 0.6 is shown in Fig. 1,
from which it is seen that this quantity has a single maximum at <p> :pmpm Re). Remember that Ergun's
equation [4], used in the calculations, gives satisfactory results only in the region of <p> = 0.3,

In connection with the indicated theoretical difficulties and, in particular, the necessity of an explicit
allowance for the collisional force F, and the moment M., it does not seem possible to determine the statis-

tical characteristics of the fluctuations in gas velocity within the framework of the simplified model under
consideration.
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Above we used the "mean" characteristics <& > and < Q> of a fluidized bed, but didn't discuss their
connection with the real observed values of the porosity €, and the gas flux (fluidization velocity) Q,. Ob-
viously, <e> = g;. But the flux < Q >, which must be used in the analysis being conducted, differs from
Q. In fact, from the definition of the local flux Q we have

Q= (e (v) + (V) =(Q) —(pV), (26)

where —<p'v'> is the additional gas flux due to the fluctuations in the parameters of the bed. This flux
coincides in order of magnitude with

— PV Y = (Pole (1 —p0olPy) < Q) (27)

[here we allow for Eq. (15) for V'], It is not hard to show by direct calculations that this quantity is an order
of magnitude lower than < Q > (its maximum value is about 9% of <Q> and is reached at p, = ¥p, = 0.4 if one
uses px = 0.6). Hence we can neglect the difference between < Q> and Q; within the framework of the approxi-
mate theory under consideration.

Then from the first equation of (5) it follows that the average force < F > of hydraulic resistance of the
fluidized bed differs from the force Fg of resistance of a stationary bed of the same porosity, "ideal" in the
sense that porosity fluctuations are absent from it, One can show that the effect of a decrease in the hydrau-
lic resistance of the fluidized bed in comparison with a stationary bed occurs. This effect was analyzed
rigorously in the limiting case of Re — 0 in [1], where satisfactory agreement with the experimental data was
achieved. A brief discussion of this effect in connection with the existence of porosity fluctuations in real
fluidized. beds is given in [8]. We note that the difference in the hydraulic resistances of stationary and fluid-
ized beds may also be connected with the fact that in the first case the force acting on an individual particle
fluctuates while in the second case the velocity of the gas near it and the velocity of the particle itself fluctu-
ate [9].

~ Equation (6) also describes the resistance of a stationary bed having a nonuniform porosity, which also
differs from the resistance of an ideal bed without fluctuations. In this connection we note that the force Fg
introduced in (3) must pertain just to an ideal bed, whereas Ergun's equation gives the connection between the
bed and the flow Q, in a bed with random particle packing in which, of course, there are porosity fluctuations.
This difference can be neglected, however, in view of the empirical character of this equation and the approxi-
mate nature of the theory itself.

It is easy to analyze the influence of particle pulsations on the macroscopic structure of the bed or its
compact phase. The tensor of the momentum flux transported by the particles in their pulsating motion is iso-
tropic under the condition of equal distribution of the pulsation energy over the degrees of freedom. Its only
independent component can be identified with the "pressure" of the disperse phase,

P = nm () = e (). (28)

Thepressure P as a function of w has a single maximum. The connection in (28) between the pressure of the
disperse phase and the rms velocity of the pulsations was verified experimentally in [10], where they also
confirmed the isotropic nature of the pressure, and hence Eq. (10).

Neglecting the Archimedes force, as in (2), the equation of conservation of particle momentum under
steady conditions can be written in the form

vP =n((F) --mg). (29)

This equation can be obtained rigorously either from the kinetic equation for the particle velocity distri-
bution function, as in [1], or from (2) if one multiplies (2) by n, writes the time derivative in (2) in the form
of a convective derivative, uses the condition of conservation of particle mass, and conducts the averaging in
the same way as in the derivation of the Reynolds equations for a turbulized fluid.

With allowance for the expressions for <F > and <w?>, Egs. (28) and (29) allow one to analyze various
problems on the height distribution of the disperse phase of a fluidized bed, the distribution near rising bubbles,
etc. Moreover, the results obtained are needed in a calculation of the effective transfer coefficients in a bed
(e.g., see the investigation of the electrical conductivity of a fluidized bed in [11], where these very results

were used).

1482



For determinacy the subject above was a uniform fluidized bed, but it is easy to see that all the equa~
tions obtained are also valid for a nonuniform bed if they refer only to its compact phase. According to the
well-known two-phase theory of fluidization, a nonuniform bed can be described as a combination of a com-
pact phase and a phase of bubbles propagating in it, with the state of the compact phase being assumed to be
close to the state of initial fluidization, so that it would seem that the quantity p must always be close to p«.
In reality, as the tests in [12] show, coarsely disperse fluidized beds deviate considerably from the require-
ments of the two-phase theory, and their compact phase can be characterized by values of p lying in a very
broad range.

In conclusion, it should be emphasized once again that the proposed theory pertains to the state of
developed fluidization with sufficiently intense pulsation motions of the particles. In the case of incompletely
fluidized or steadybeds, the friction between particles rolling over one another, the thrust forces arising in
such rolling, analogous in some measure to the normal stresses in flows of non-Newtonian fluids, and so forth
play a major role, which was entirely ignored above. Some of the ideas discussed in [6] will evidently prove
useful when introduced into an analysis of these effects.

NOTATION

a and m, particle radius and mass; d, and d;, gas and particle densities; y and v, dynamic and kinematic
viscosities of the gas; ¢ and p =1 — ¢, porosity of bed and concentration of solid particles in bed; x, y, z, t,
coordinates and time; v, w, u =v —w, velocities of gas and particles and their relative velocity, respectively;
Q, volumetric gas velocity; F, Fp,, F,, Fg, force of interaction of particles with carrier stream, transverse
Magnus force, force acting on a particle as a result of collisions with other particles, and force of interaction
of particles with gas stream in a stationary bed; g, acceleration of gravity; B, and 3,, coefficients; K (p) and
K,(p), functions of local bed concentration; A, angular velocity of particle rotation; I, moment in inertia of a
particle about an axis passing through its center; M and M;, moments acting on a particle on the part of the
carrier stream and other particles with which it collides; E, total energy of pulsating motion of a particle; n,
number concentration of particles; angle brackets are used in designations of average quantities; symbols with
primes are some random functions of time and the coordinates having zero means.
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