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A s imple  model  of a uni form i so t rop ic  bed of l a rge  pa r t i c l e s  fluidized by a gas  is offered 
which allows one to e s t ima te  the  intensi ty of the chaotic t r ans la t iona l  and rota t ional  m o -  
tion of the pa r t i c l e s .  The influence of the pulsat ions on the obse rved  m a c r o s c o p i c  p r o p e r -  
t ies  of the bed is d i scussed .  

As is known, the main f ea tu re  of fluidized s y s t e m s ,  making them very  a t t r ac t ive  for  p rac t i ca l  use as the  
main working subs tance  for  heat  exchanger s ,  chemica l - eng inee r ing  appa ra tu s ,  e t c . ,  is that  the effect ive va -  
lues of the p a r a m e t e r s  cha rac t e r i z ing  the intensi ty  of t r a n s f e r  p r o c e s s e s  in them a r e  usual ly s e v e r a l  o rd e r s  of 
magnitude higher  than the analogous values for  homogeneous fluids. This fact  is connected in cons iderab le  
m e a s u r e  with the  o c c u r r e n c e  of developed pulsat ion mot ions ,  both of the suspended pa r t i c l e s  and of the f luidiz-  
ing med ium,  in a un i form fluidized bed or  in the compac t  phase  of a nonuniform bed. The theory  of such 
~pseudoturbulent 't motions was {ieveloped in [1] for  beds of sufficiently fine pa r t i c l e s ,  when the hydraulic fo rces  
of the in te rphase  in te rac t ion  a r e  l inear  with r e s p e c t  to  the re la t ive  veloci ty  of the phases ,  while the in te rac t ion  
between pa r t i c l e s  is accompl i shed  predominant ly  by random fields of the velocity and p r e s s u r e  of the continu- 
ous phase  genera ted  by all  the p a r t i c l e s ,  so  that  d i r ec t  pa r t i c l e  coll is ions can be neglected ent i re ly  in a f i r s t  
approximat ion .  

Ent i re ly  different  c i r c u m s t a n c e s  a r i s e  in fluidized beds of l a rge  pa r t i c l e s ;  when the Reynolds number ,  
which c h a r a c t e r i z e s  the d i sp lacement  f low over  one pa r t i c l e ,  is  l a rge  compared  with unity,  the fo rces  of in-  
t e rac t ion  between the phases  a r e  nonl inear  with r e spec t  to veloci ty ,  and the exchange of momentum and energy  
between pa r t i c l e s  is accompl i shed  mainly  through the i r  col l i s ions .  In the l imit ing si tuation when the pa r t i c les  
a r e  ve ry  l a rge  and the i r  pulsat ions a r e  intense enough one can a s s u m e  that  the coll isions lead to an approx i -  
mate ly  equi l ibr ium distr ibut ion of the energy of chaotic motion over  the t rans la t iona l  and rota t ional  deg rees  of 
f r eedom of the p a r t i c l e s ,  as  is  a s s u m e d  in [2], for  example .  

Let  us cons ider  a bed of sphe r i ca l  pa r t i c l e s  of radius  a and densi ty d 1 kept in the fluidized s ta te  by a 
homogeneous ,  ascending,  gas  s t r e a m  of densi ty  d o and v i scos i ty  P0. F o r  s impl ic i ty  we a s s u m e  the bed to be 
wide in the s e n s e  that  the influence of the walls on its s t r u c t u r e  f a r  f r o m  them can be neglected.  We a lso  
neglect  the r egu l a r  c i rcula t ion  of the gas  and the suspended ma te r i a l  whose origin may be connected e i ther  
with the re ta rd ing  effect of the walls o r  with mac roscop i c  instabi l i ty  of the homogeneous s ta te  under cons ide r -  
at ion.  Then the mean values of the bed poros i ty  < e > and the gas  flow < Q > will depend only on the height x > 0 
above the  gas -d i s t r ibu t ion  gr id  x = 0, but not on the t r a n s v e r s e  coord ina tes .  In an invest igat ion of local  pu l sa -  
t ions this  dependence is a l so  neglected.  The mean gas  veloci ty  calculated for  the f r ee  ( ' th rongh ~) c ross  s e c -  
tion of the bed is < v > = < e >-1< Q > ,  while the mean pa r t i c l e  veloci ty  is ( w > = 0. 

In r ea l i t y ,  the pa r t i c les  a r e  involved in chaotic pulsating motion due to the in teract ion between the 
s t r e a m  and poros i ty  fluctuations [3], which a l so  cause  the appearance  of fluctuations in the gas  veloci ty and 
p r e s s u r e .  F o r  the local  instantaneous values of the gas and par t i c le  veloci t ies  and the bed poros i ty  we wri te  

v = ( v ) + v ' ,  w = w ' ,  ~ = ( ~ )  ~ g ,  (I) 

where  the symbols  with p r i m e s  denote cer ta in  r andom functions of t ime  and the coordinates  which have ze ro  
means .  The p rob l em  cons is t s  in finding the s t a t i s t i ca l  cha r ac t e r i s t i c s  of these  random quantit ies in the f o r m  
of functions of < s >  and < Q >  and the physica l  p a r a m e t e r s  of the pa r t i c les  and the gas .  

Fo r  this purpose  we inves t iga te  the equations of t rans la t iona l  motion and rotat ion of one (test) pa r t i c l e ,  
t r ea t ed  as a cha r ac t e r i s t i c  r ep r e s en t a t i ve  of the collect ion of suspended pa r t i c l e s .  The f i r s t  of these  equa-  
t ions has the f o r m  
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mdw/dt = F -~- Fm -~- F~ § rng, rn = 4/3aa3di, (2) 

where  F ,  F m ,  and F c a r e  the fo rce  of the in teract ion with the c a r r i e r  s t r e a m ,  d i rec ted  along the s t r e a m ,  
the t r a n s v e r s e  Magnus f o r c e ,  and the fo r ce  acting on the t e s t  pa r t i c l e  as a r e su l t  of coll is ions with o ther  
pa r t i c l e s .  In the  coordinate  s y s t e m  being used the vec to r  of g rav i ta t iona l  acce le ra t ion  is r e p r e s e n t e d  in 
components in the f o r m  g = (--g,  0 ,0) .  

Because  of the s m a l l n e s s  of the densi ty  r a t io  d0/d 1 we neglect  the effect  of the assoc ia ted  m a s s  of the 
gas .  Then to  ca lcula te  F it  is suff icient  to  cons ider  the fo rce  Fs  acting on the pa r t i c l e  in a s teady bed of 
mot ion less  p a r t i c l e s ,  which it  is convenient  to r e p r e s e n t  with the help of the t w o - t e r m  equation 

F, -= [~iKi (P) + ~=K= (p) u] u, u = v - -  w, (3) 

where  ~1 and f12 a r e  ce r ta in  coeff icients  and Kl(P) and K2(P) a r e  functions of the local  bed concentrat ion p = 1--e .  
A l a rge  number  of e m p i r i c a l  equations have been sugges ted  for  these  quanti t ies;  he re  we use  Ergun ' s  equation 
[4], valid fo r  e ~ 0.7, in acco rdance  with which 

~ l = 5 0 m a ~  o, ~ z =  3'5 name, K l ( p ) =  p , K~(p)= 1 (4) 

To obtain a r ep re sen t a t i on  for  the  fo rce  act ing in a bed of f r ee ly  pulsat ing pa r t i c l e s  we expand F s in a 
Tay lo r  s e r i e s  with r e s p e c t  to  the f luctuations introduced in (1). Being confined to t e r m s  of f i r s t  o rde r  with 
r e s p e c t  to  the f luctuat ions ,  fo r  the  a v e r a g e  fo rce  < F > and Its pulsation F '  we obtain 

<F>  = < F . > + I h ( K ; ( O ' u ' >  + ' / z K ; ' < O " >  ( . > )  + 

+ I~z {K, [ (("oU') u' ) + ~/z ( u'z :, Uo - -  ~/2 < (~u' )Z)  Uo] + 

+K~ [ ( u )  ( p ' u ' ) + ( p ' ( U o U ' ) )  ( u ) ] + I / 2 K ~ ' ( p  ' z )  ( u )  ( u ) } ,  

F' = (I~K~ + I~,K= ( .  > ) u' + I~z/fz (UoU') < u > + 

(5) 

+(~K;+~2K'~(u))(u)p', uo--  ( u ) / ( u > .  

Here  we in t roduce the  f luctuations p '  = - - e '  in the  volume concentrat ion of the d i s p e r s e  phase  in the bed,  while 

( F. > = (I~,K, + 13d(~ ( u > ) ( u ,',. K2 = / ( ~ ( ( o  >). (6) 

where  < F s > r e p r e s e n t s  the fo rce  act ing in a un i fo rm s ta t ionary  bed whose poros i ty  coincides with the mean 
poros i ty  < e > of the f lutdized bed,  while the  a s t e r i s k  denotes different ia t ion with r e spec t  to < p >.  We r e -  
p r e sen t  the  Magnus fo rce  F m  in the f o r m  [5] 

8 ~ta3do" (7) 

The fac to r  e -1 in the express ion  for  the coeff icient  is introduced phenomenological ly  he re  by analogy with the 
r ep resen ta t ion  of the second t e r m  in (3), as  if  the  d i sp lacement  s t r e a m l i n e  flow led to an i nc r ea se  of e -1 t imes  
in the s t r e s s e s  at the su r f ace  of the pa r t i c l e  r e spons ib l e  for  the  appea rance  of the Magnus fo rce .  

The quantity ~ in (7) r e p r e s e n t s  the angular  veloci ty  of rotat ion of the par t i c le ;  i ts  mean  value is equal 
to ze ro  owing to  the s y m m e t r y  of the p rob l em.  It is c l e a r  that  the Magnus force  is impor tan t  only at a high 
r e l a t i ve  gas  veloci ty  u; i t  was evidently f i r s t  used in [2, 6] in an ana lys i s  of f luidized and genera l ly  concen-  
t r a t ed  d i s p e r s e  s y s t e m s .  F r o m  (7), by analogy with the der ivat ion of (5} f r o m  (3), we have 

(F, , ,> = o ,  F,: ,=133(~ >-~(~, ' • ( u > ) .  (8) 

Regarding the fo rce  Fc ,  connected with d i r ec t  pa r t i c l e  col l i s ions ,  it is only known that  i t  should be  r e -  
p resen ted  in the fo rm of a sum of the fo rces  of col l ts ional  in teract ions  with individual pa r t i c l e s ,  which dif fer  
f rom ze ro  only during the s m a l l  t i m e  in terva ls  of such in te rac t ions .  

By analogy with (2), we wri te  the equation for  the rotat ion of the  par t i c le  in the  f o r m  
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ld~,/dt = M -" M c, l = 8/,5:'raSdi, (9) 

where M and M c a r e  the moments  acting on the t e s t  pa r t i c l e  on the par t  of the c a r r i e r  s t r e a m  and the other  
pa r t i c l e s  with which it col l ides .  Unfortunately,  a l m o s t  nothing is known e i ther  about Mc or  (for l a rge  p a r t i -  
cles) about the moment  M. 

In such a si tuat ion no cons is tent  ana lys i s  of the s tochas t ic  equations (2) and (9) p roves  to be poss ib le  
for  l a rge  pa r t i c l e s .  In this r e s p e c t  the c o a r s e l y  d i s p e r s e  s y s t e m  under considerat ion dif fers  impor tan t ly  
f r o m  suspens ions  of fine pa r t i c l e s  when, f i r s t ,  one can e i ther  ent i re ly  ignore  the Magnus fo rce  [and the neces -  
s i ty  of studying Eq. (9)] or  exp re s s  M with the help of a l inear  equation through the cur l  of the velocity of the 
suspens ion and the angular  veloci ty  of the pa r t i c l e ,  and second,  one can neglect  d i rec t  pa r t i c l e  coll is ions by 
a s suming  that  they in te rac t  by means  of the continuous phase .  In the case  under  cons idera t ion ,  on the con t r a ry ,  
col l is ions a r e  v e r y  impor tan t  and such a "co l l i s ion less"  approximat ion  is invalid.  To ove rcome  the se r ious  
diff icult ies which a r i s e ,  t h e r e f o r e ,  one mus t  employ some  addit ional  cons idera t ions  which will make  it poss ib le  
not to t r e a t  Eqs .  (2) and (9) in the i r  or iginal  f o r m .  

Fo r  l a rge  enough par t i c les  the exchange of momen tum and energy  in coll is ions is c o m p a r a b l e  in magnitude 
with the momen tum and energy of the individual colliding pa r t i c l e s .  T h e r e f o r e ,  the re laxat ion t i m e  of the s u s -  
pended pa r t i c l e s  is on the s a m e  o r d e r  as  the t i m e  requ i red  for  a sma l l  number  of s u c c e s s i v e  col l is ions.  Con- 
s ider ing  that  the l a t t e r  t ime  is quite shor t  in a concent ra ted  fluidized bed (up to p ~ 0.1), henceforth we will be 
confined to an ana lys i s  of only that  l imit ing equi l ibr ium s ta te  in which the pr inciple  of the equi l ibr ium d i s t r ibu-  
tion of the  pulsat ion energy  of the pa r t i c l e s  ove r  the deg rees  of f r e edom mus t  c lea r ly  be sa t i s f ied .  We then 
have the  re la t ions  

,n < w z > = / < ~ . z > ,  

2> <w2> = <w~> _ _  1 
<w~ = ~ ~ --5- <w~>, 

= <;2> __ <).2> __= 1 

<).}> (lO) 

in accordance  with which it is sufficient  to  find the ave r age  energy  of the t rans la t iona l  motion of the pa r t i c les  
to d e t e r m i n e  the i r  r o o t - m e a n - s q u a r e  ve loc i t i es .  Since w'  = w and k '  = k, we drop  the p r i m e s  in the des igna-  
t ions of the pulsat ions w'  and X' in (10) and below. 

Because  the p rob l em  is s t e a d y - s t a t e ,  the  mean pulsation energy does not depend on t ime ,  and f r o m  (2) 
and (9), a f t e r  s c a l a r  mult ipl icat ion by w and ~, r e spec t ive ly ,  and averag ing ,  we obtain 

<F'w> . -  <F,~w> -!- <F~w> --=0, <M;.> + <McL > - -0 ,  (11) 

with the f i r s t  t e r m s  in (11) descr ib ing  the mean work of the fo rces  F '  and F m '  and the moment  M on the r a n -  
dom movemen t s  of the pa r t i c l e  pe r  unit t i m e  wMle the l as t  t e r m s  c h a r a c t e r i z e  the energy dissipat ion during 
pa r t i c l e  col l i s ions .  This  d iss ipat ion is due to  the ine las t ic i ty  of the col l i s ions ,  as a r e su l t  of which pa r t  of 
the energy goes into heat within the p a r t i c l e s ,  to the abrupt  change in par t i c le  veloci ty  during the col l i s ions ,  
and to the addit ional v iscous  diss ipat ion of energy  in the gas connected with it .  With good accuracy  one can 
neglect  t hese  e f fec t s ,  as  well  as the las t  t e r m s  in i l l ) .  

The l a t t e r  means  that  the energy of pa r t i c l e  pulsat ions in the fluidized bed under considerat ion will be 
the s a m e  as that  in s o m e  ficti t ious bed with the s a m e  a v e r a g e  p a r a m e t e r s  but in which par t ic le  coll isions a r e  
absent .  It is c l ea r  that  the pulsat ions in the pa r t i c l e  veloci t ies  in such a fict i t ious bed (denoted by capitolized 
symbols  to avoid confusion) sa t i s fy  the following equations: 

(12) m d W / d t  = F' .!- F~, IdA:'dt -- M. 

As before ,  the moment  M is unknown. F o r  s impl ic i ty  below, however ,  we use  an " ine r t i a l e s s "  approx i -  
mat ion,  accord ing  to which we neglect  the p a r t i c l e ' s  ine r t i a  when studying both its rotat ion and its t rans la t iona l  
motion.  Then the t e r m s  on the left  s ides  of (12) vanish  and the second equation gives s imply  M = 0, which is 
poss ib le  only when the vec to r  rot  V/2 ,  cha rac te r i z ing  the local  vor t ic i ty  of the gas  nea r  the pa r t i c l e ,  coincides 
with the angula r  veloci ty  A. Within the f r a m e w o r k  of the ine r t i a l e s s  approximat ion the t ime  dependence of the 
f luctuations is un impor tan t ,  and they can be fo rmal ly  t r ea t ed  as s teady random fields .  We obtain the equations 
cor responding  to this approx imat ion ,  which the pulsation frequency w mus t  sa t i s fy ,  f rom a compar i son  of the 
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t e r m s  on the left  and r ight  s ides  of the f i r s t  equation of (12) with al lowance fo r  the express ions  for  the coeff i -  
c ients  131 and f12 in (4): 

(o<< 100 v~ do <u> d o tie - - - - ,  ~ o < <  - -  , r e = - - .  ( 1 3 )  
a z d, a d, d o 

If inequali t ies  (13) a r e  viola ted then the r e su l t s  obtained with the pa r t i c l e  iner t i a  neglected have only 
an o r d e r - o f - m a g n i t u d e  c h a r a c t e r .  

Using what was said above and the expres s ions  for  F '  and F m '  in (5) and (8), f r o m  (12) we obtain the 
following equations fo r  the  f luctuations In the  p a r a m e t e r s  of the f ict i t ious col l l s ionless  bed: 

(f~,K, + fhK~ < u > ) U' + li, K2 (u0U') < u > = - -~ ,K?  < u > p' 

- - f~K~<u> < u > p ' - - / ~ 3 < e > - ' ( A  • < u>),  A =ro tV ' /2 .  

(14) 

To exp re s s  W and A only through the fluctuation in the concentra t ion one mus t  find a r ep resen ta t ion  for  
the pulsation ve loc i ty  V'  of the  g a s ,  for  which, in acco rdance  with the gene ra l  method in [1], one would have 
to cons ider  the equations of motion of the  gas  in the gaps  between pa r t i c l e s .  Such an ana lys i s  is ve ry  c u m b e r -  
some;  but with the  accu racy  adopted he re  i t  can be s impl i f ied  cons iderab ly  by es t imat ing  V'  f r o m  the condition 
of constancy of the local  gas  flow, i . e . ,  f r o m  the equality Q'  = e ' < v >  + < e > V '  = 0. This  g ives  

V ' = - - < s > - ' g < v >  = < s > - ' p ' < u > , V ' = U ' + W .  (15) 

The approximat ion  leading to (15) is equivalent to  the assumpt ion  that  the influence of s t r e s s e s  in the gas  
on the pa r t i c l e  pulsat ion is weak,  which was a l r eady  pa r t ly  used in the der ivat ion of (5), a consequence of which 
is the to ta l  neglect  of f luctuations in the p r e s s u r e  and in the hor izontal  components  of the gas  veloci ty .  This  is  
indirect ly  conf i rmed  by the ana lys i s  in [1], accord ing  to which these  fluctuations do not much affect  the pu lsa -  
t ions of fine enough pa r t i c l e s  even when they a r e  fluidized by drops  of l iquids.  

Now let  us so lve  Eqs .  (14) and (15). Since < u > = ( < u > ,  0, 0) in the components ,  f r o m  (15) and the 
second equation of (14) we have the  following rep resen ta t ion  for  A: 

A = '/2 < e ) -1 < u ) (0, Op'/Oz, ---~p'/Oy). (16) 

Then for  the vec to r  A x < u >  we obtain 

A • < u > = -- ' /2  < e > -1< u ) 2(0, Op'/@, Op'/Oz), (17) 

so  that  the  f i r s t  equation in (14) leads  to the equali t ies  

(~tKi + 2~2K~ < u > ) U~ = - -  plK~ < u > ~' - -  ~K~ < u > ~o', 

(13tK, -~- gzKz < u ) ) U; ='/~.~a ( e ) -z ( u > 2V• 

(18) 

where  U~ ' i s  the  pro jec t ion  of U'  onto the hor izonta l  plane in which the grad ien t  ope ra to r  V~p'  = (0, 0p ' / 0y ,  

0p ' /0z)  o p e r a t e s .  

F r o m  (15) and (18) it  is easy  to  obtain r ep resen ta t ions  for  the components of the vec to r  W. In a c c o r d -  
ance with the data indicated above ,  the  to ta l  energy  E = 1/2 (m< W 2 > + < A 2 >) of the pulsating motion of a p a r -  
t i c l e  is  In te res t ing .  We have 

<A 2 > 1 
< u >-------~ -- 4 < e >----~ < ]V• >' (19) 

F o r  the final de te rmina t ion  of E we must  find explicit  express ions  for  < p , 2 >  and < IV•  12>. The la t t e r  
is easy  to  do by using the s pec t r a l  theory  of the r andom concentrat ion of a d i spe r s e  s y s t e m  developed in [7], 
f r o m  which 
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0,2 4'~ P 

Fig .  I .  Dependence  of p a r t i c l e  
pulsat ion ene rgy  on p at d i f ferent  
Reynolds  n u m b e r s .  

<,o ' z )  = < p > " (  

F r o m  (19)-(21) we have 

t (,o)) <~v• 2 (~2).~:~ (p>83 ( <r,>) 
p, 5 a a p, 

m < ~ - ~ - -  -- ( p ~2 1 - - . - -  " p, < [ )  ~,K, " 2132K2<u )  / 

�9 1 ( ~ ) = ' , ' 3  ~p ) 2 , 3 [  ~ _  i _ ( a - ~ 3 < e ) - ~ ( u )  )21} 

(22) 

wlfich a l s o  d e t e r m i n e s  the  r m s  componen t s  of the  t r a n s l a t i o n a l  and angu la r  ve loc i t ies  ot' the pa r t i c l e s  in a c -  
c o r d a n c e  with (10). 

If" we use  Eqs .  (4) and (7) we obtain f r o m  (22), a f t e r  a s imp le  ca lcu la t ion ,  

m - ( u ) - ~ =  ~ (s) 1 . . . .  1 - , ( 0.0534Rc 
, P, . ( p )  i -0 .0466Re / - ~  0"58(P) '%a 0.4 , , (23) , . \ ( P ) -i- 0.0233Re 

where  we in t roduced  the modif ied  Reynolds  n u m b e r  

R e  aVo' <s) <u) =:avo' < Q )  (24) 

As Re ~ 0 and Re ~ ~ we obtain the a s y m p t o t i c  equat ions 

r e ( u >  z \ T--)- / El2 ~--- -~. 0,232 < p ) 2'3 1 . . . . . . . .  , p, 

r n ( u >  z \ < a ) ,  p, 

(25) 

The dependence  of the  p a r t i c l e  pulsa t ion ene rgy  on < p >  at d i f fe ren t  Re and p ,  : 0.6 is show~ in F ig .  1, 
f r o m  which it is  seen that  this  quanti ty has a s ingle  m a x i m u m  at <p> :: Pm (Re). R e m e m b e r  that  E r g u n ' s  
equation [4], used in the ca l cu la t ions ,  g ives  s a t i s f a c t o r y  r e su l t s  only in the  reg ion  of <p>  >r 0.3. 

In connect ion  with the indicated  t h e o r e t i c a l  d i f f icul t ies  and,  in p a r t i c u l a r ,  the n e c e s s i t y  of an explici t  
a l l o ~ a n c e  f o r  the  co l l i s iona l  f o r c e  F c and the m o m e n t  Mc, it does not s e e m  poss ib l e  to  d e t e r m i n e  the  s t a t i s -  
t i ca l  c h a r a c t e r i s t i c s  of the f luc tuat ions  in gas  ve loc i ty  within the f r a m e w o r k  of the  s impl i f i ed  mode l  under  
cons ide ra t i on .  
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Above we used the "mean" charac te r i s t i cs  < e >  and < Q >  of a fluidized bed, but didn't  discuss  their  
connection with the rea l  observed values of the porosi ty  e 0 and the gas flux (fluidization velocity) Q0. Ob- 
viously,  < e >  = e0. But the flux < Q >,  which must  be used in the analysis being conducted, differs f rom 
Q0. In fact ,  f rom the definition of the local flux Q we have 

0 ~ =  < s )  <v> + <gv'>  = <Q> - -  <p'v'>,  (26) 

where - - < p ' v ' >  is the additional gas flux due to the fluctuations in the pa ramete r s  of the bed. This flux 
coincides in o rde r  of magnitude with 

--< p'v'> =(n/So)~l-n/~) < e> (27) 

[here we allow for Eq. (15) for  V']. It is not hard to show by direct  calculations that this quantity is an order  
of magnitude lower than < Q > (its maximum value is about 9% of < Q >  and is reached at P0 = 2/~p. = 0.4 ff one 
uses p ,  = 0.6). Hence we can neglect the difference between < Q> and Q0 within the f ramework  of the approxi-  
mate theory  under consideration.  

Then f rom the f i rs t  equation of (5) it follows that the average  force  < F > of hydraulic res is tance  of the 
fluidized bed differs f rom the force  Fs of r es i s t ance  of a s ta t ionary bed of the same poros i ty ,  "ideal" in the 
sense that porosi ty  fluctuations a re  absent f rom it. One can show that the effect of a decrease  in the hydrau-  
lic r es i s t ance  of the fluidized bed in compar ison with a s ta t ionary bed occurs .  This effect was analyzed 
r igorous ly  in the limiting case of Re -* 0 in [1], where sa t i s fac tory  agreement  with the experimental  data was 
achieved. A br ief  discussion of this effect in connection with the existence of porosi ty fluctuations in real  
fluidized beds is given in [8]. We note that the difference in the hydraulic res is tances  of s tat ionary and fluid- 
tzed beds may also be connected with the fact that in the f i r s t  case the force acting on an individual part icle  
fluctuates while in the second case the velocity of the gas near it and the velocity of the par t ic le  i tself  f luctu- 

ate [9]. 

Equation (6) also descr ibes  the res i s tance  of a s tat ionary bed having a nonuniform poros i ty ,  which also 
differs f rom the res i s t ance  of an ideal bed without fluctuations.  In this connection we note that the force Fs 
introduced in (3) must  pertain just  to  an ideal bed, whereas Ergun ' s  equation gives the connection between the 
bed and the flow Q0 in a bed with random par t ic le  packing in which, of course ,  there  a re  porosi ty fluctuations. 
This difference can be neglected,  however,  in view of the empir ical  cha rac te r  of this equation and the approxi-  
mate nature of the theory itself.  

It is easy to analyze the influence of par t ic le  pulsations on the macroscopic  s t ruc ture  of the bed or its 
compact  phase. The tensor  of the momentum flux t ranspor ted  by the part icles  in their  pulsating motion is i so-  
t ropic under the condition of equal distribution of the pulsation energy over  the degrees  of f reedom. Its only 
independent component can be identified with the "p ressu re"  of the d i sperse  phase,  

1 1 ( 2 8 )  
- -  n m  < ~ ) ,od, < w ~ > P:=3 = ~ -  " 

T h e p r e s s u r e P  as a function of w has a single maximum. The connection in (28) between the p res su re  of the 
d i sperse  phase and the rms  velocity of the pulsations was verified experimentally in [10], where they also 
confirmed the isotroptc nature of the p r e s su re ,  and hence Eq. (10). 

Neglecting the Archimedes  fo rce ,  as in (2), the equation of conservat ion of part icle  momentum under 
steady conditions can be written in the fo rm 

V P ~ n ( < F >  -.-rag). (29) 

This equation can be obtained r igorously  either f rom the kinetic equation for the par t ic le  velocity d i s t r i -  
bution function, as in [1], or  f rom (2) if one multiplies (2) by n, writes the t ime derivat ive in (2) in the form 
of a convective derivat ive,  uses the condition of conservation of par t ic le  mass ,  and conducts the averaging in 
the same way as in the derivation of the Reynolds equations for a turbulized fluid. 

With allowance for the expressions for < F >  and < w 2 > ,  Eqs. (28) and (29) allow one to analyze various 
problems on the height distribution of the d isperse  phase of a fluidized bed, the distribution near r is ing bubbles, 
etc. Moreover ,  the resul ts  obtained a re  needed in a calculation of the effective t r ans fe r  coefficients in a bed 
(e .g . ,  see the investigation of the e lec t r ica l  conductivity of a fluidized bed in [11], where these very resul ts  

were used). 
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F o r  d e t e r m i n a c y  the subject  above was a uni form fluidized bed, but it is easy  to s ee  that  all  the equa-  
t ions obtained a r e  a l so  valid fo r  a nonuniform bed ff they r e f e r  only to i ts  compact  phase .  According to the 
well-known two-phase  theory  of f luidizat ion,  a nonuniform bed can be desc r ibed  as a combination of a c o m -  
pact  phase  and a phase  of bubbles propagat ing  in i t ,  with the s ta te  of the compac t  phase  being a s sumed  to  be  
c lose  to the  s t a te  of init ial  f luidizat ion,  so  that  i t  would s e e m  that  the quantity p must  always be c lose  to p , .  
In r ea l i t y ,  as  the t e s t s  in [12] show, coa r s e l y  d i s p e r s e  fluidized beds deviate  cons iderably  f r o m  the r e q u i r e -  
ments  of the two-phase  theory ,  and the i r  compact  phase  can be cha r ac t e r i z ed  by values of p lying in a very  
b road  range .  

In conclusion,  it should be emphas ized  once again that  the proposed theory per ta ins  to the s ta te  of 
developed fluidization with sufficiently in tense  pulsat ion motions of the p a r t i c l e s .  In the case  of incompletely  
fluidized or  s t eadybeds ,  the f r ic t ion between pa r t i c l e s  rol l ing over  one another ,  the th rus t  fo rces  a r i s ing  in 
such roUing,  analogous in s o m e  m e a s u r e  to the no rma l  s t r e s s e s  in flows of non-Newtonian f luids,  and so  for th  
play a m a j o r  ro le ,  which was ent i re ly  ignored above.  Some of the ideas d i scussed  in [6] will evidently p rove  
useful  when int roduced into an ana lys i s  of these  ef fec ts .  

N O T A T I O N  

a and m,  pa r t i c l e  radius  and m a s s ;  d o and dl,  gas  and pa r t i c l e  dens i t ies ;  p and v, dynamic and k inemat ic  
v i scos i t i e s  of the gas;  e and p = 1 --  e, poros i ty  of bed and concentra t ion of solid pa r t i c l e s  in bed; x, y ,  z, t ,  
coordinates  and t ime ;  v ,  w, u = v - -w,  veloci t ies  of gas  and pa r t i c l e s  and the i r  r e l a t ive  ve loc i ty ,  respec t ive ly ;  
Q, vo lumet r i c  gas  veloci ty;  F ,  F m,  F c ,  F s ,  fo rce  of in teract ion of par t i c les  with c a r r i e r  s t r e a m ,  t r a n s v e r s e  
Magnus fo r ce ,  f o r ce  acting on �9 pa r t i c l e  as  a r e su l t  of coll is ions with o ther  pa r t i c l e s ,  and force  of in teract ion 
of pa r t i c les  with gas  s t r e a m  in a s t a t ionary  bed; g,  acce le ra t ion  of g rav i ty ;  fll and f12, coeff icients;  K1{p) and 
K2{p) ~ functions of local  bed concentrat ion;  X, angular  veloci ty  of pa r t i c l e  rotation; I, moment  in iner t ia  of a 
pa r t i c l e  about an axis  pass ing  through its  center ;  M and Mc, moment s  acting on a pa r t i c l e  on the pa r t  of the 
c a r r i e r  s t r e a m  and other  pa r t i c l e s  with which i t  col l ides;  E,  to ta l  energy  of pulsat ing motion of a par t ic le ;  n, 
number  concentra t ion of pa r t i c l e s ;  angle b r acke t s  a r e  used in designations of a v e r a g e  quanti t ies;  symbols  with 
p r i m e s  a r e  some  r andom  functions of t i m e  and the coordinates  having zero  means .  
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